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Turbulent flows subjected to rotation display vortices parallel to the rotation axis 
and exhibiting a long timescale compared to the turbulent turnover time and the 
rotation period. A similar flow pattern is observed arising from the thermal 
instability in a rotating fluid. We demonstrate the analogy between turbulence and 
thermal convection in a rotating fluid. A basic quasi-geostrophic turbulent flow is 
considered which is forced at the bottom of the layer by a stochastic component of 
velocity parallel to the rotation axis. The turbulent basic state has no mean flow and 
the gradient along the rotation axis of the turbulent kinetic energy -az(w2) is 
analogous to the mean temperature profile in thermal convection. The linear 
perturbation equations of this basic turbulent state are given, where the thermal 
diffusion equation is replaced by the turbulent kinetic energy equation. Using a 
simple closure of this equation the model demonstrates the occurrence of an 
instability when the Reynolds number exceeds a critical value. Marginal stability 
curves are deduced by numerical integration of the perturbation equations. The 
results show order-of-magnitude agreement with laboratory experiments. 

1. Introduction 
A number of experiments on turbulent flows subjected to rapid rotation have 

demonstrated the drastic effect of rotation on the structure of turbulence (Bretherton 
& Turner 1968; Colin de Verdihre 1980; Hopfinger, Browand & G a p e  1982; 
Dickinson & Long 1982). When turbulence is continuously forced, as in the 
previously cited experiments, the flow tends to become two-dimensional in a plane 
perpendicular to the rotation axis. The flow pattern takes the form of an array of 
vortices that are roughly parallel to the rotation axis. These vortices possess a 
surprising degree of steadiness since their evolution timescale is large compared to 
the turbulence turnover time, and they have a well-defined lengthscale (no 
continuous growth in lengthscale according to the two-dimensional inverse cascade 
theory is observed). 

The initiation of cyclones in a turbulent rotating fluid was interpreted by Scorer 
(1966) primarily as a process of angular-momentum mixing. This idea was further 
investigated by Bretherton & Turner (1968), McEwan (1976) and Thompson (1979), 
but it failed to predict the lengthscale of the vortices and to explain their long 
timescale. Another model of the initiation of cyclones was proposed by Maxworthy , 
Hopfinger & Redekopp (1985) using the analogy with stratified fluids. This 
mechanism does not lead to quantitative predictions either and its relevance needs 
to be confirmed by experiments. Lundgren (1985) has recently studied different 
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models of vortices in a rotating flow subjected to a slow withdrawal along the 
rotation axis and the results have been compared with observations by Hopfinger 
et al. (1982). Nevertheless, we believe that the continuous withdrawal assumption is 
a very restrictive one which itself implies that vortex genesis effect. 

The present paper was motivated by a qualitative analogy between thermal 
convection and turbulence in a rotating fluid that appears when comparing the 
visualizations by Nakagawa & Frenzen (1955) and Hopfinger et al. (1982). The 
theoretical underpinnings of this analogy are examined. In $ 2 a quasi-geostrophic 
homogeneous turbulent flow is described which serves as the basic state of a flow 
whose linear stability is studied in $3. This turbulent flow is forced at the bottom of 
the layer by a stochastic component of velocity parallel to the rotation axis. The 
basic turbulent flow has no mean flow, and the averaged momentum equations show 
that the gradient along the axis of rotation of the turbulent kinetic energy -aZ<w2> 
is equivalent to the mean temperature profile in thermal convection with rotation. 
The presentation of the stability analysis in $ 3 closely follows Chandrasekhar’s 
(1961, $624-29) presentation of thermal convection theory in order to highlight the 
similarities and place greater emphasis on the differences. Finally, $4 discusses the 
results of the theory in the context of the experiments of Colin de Verdikre (1980) and 
Hopfinger et al. (1982, hereinafter referred to as HBG). 

Our model of vortex genesis in a turbulent flow is complementary to the approach 
by Maxworthy et al. (1985) who considered the transient evolution once turbulence 
is suddenly produced in a rotating fluid. We do not examine the transient evolution 
but instead focus on the steady instability pattern of an established quasi- 
geostrophic turbulent flow having no mean flow component. We believe that this 
flow pattern is the one toward which the transient flow described by Maxworthy 
et al. will evolve. Since the basic turbulent flow is quasi-geostrophic, i t  is two- 
dimensional in a plane perpendicular to the rotation axis, implying an infinite speed 
of propagation of turbulent motions by inertial waves. This substantial simpli- 
fication is presumably valid for averaged momentum equations. Nevertheless, the 
effect of inertial waves on the perturbation is taken into account in the perturbation 
equations derived in $3, although it vanishes when seeking steady solutions. 

2. Basic state of boundary forced turbulence 
Consider a geostrophic turbulent flow in a layer which is contained between the 

planes z = - H  and z = 0 (figure 1). The whole system is rotating around the z-axis 
with a Coriolis parameterf = 252. The dominant balance is between the Coriolis force 
and the pressure gradient, 

(2.1) 
-fpv = -azp, 

fPU = a, P 
(see, for instance, the review by Rhines 1979 on geostrophic turbulence). This 
balance requires that the Rossby number (Ro = u / f L )  and the Ekman number 
(E = v/fH2) are small. tl is a representative velocity of motions in the plane (2, y), L is 
the horizontal lengthscale and H the vertical lengthscale (we assume the timescale to 
be L l u ) .  The continuity equation implies that the vertical component of velocity w 
scales with RouHIL. Assuming Ro2H2/L2 4 1 the pressure is nearly hydrostatic. 
From (2.1) the velocities u and v are independent of the z-coordinate and the 
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FIGURE 1. Schematic of the fluid layer in the coordinate system (0, x, y, 2). The upper boundary 
(z = 0) is rigid. The layer is stirred by a stochastically forced vertical component of velocity 
W J X ,  y, t )  at the lower boundary (z = -HI. The whole system is rotating and motions are quasi- 
geostrophic. 

horizontal flow is two-dimensional. The time evolution of the geostrophic flow is 
given by the vorticity equation (Pedlosky 1979, p. 35) 

The lowest-order term O(u2/L2) in the latter equation is independent of the z- 
coordinate. Hence, the rate of stretching fa, w is a function only of z, y and t .  In 
our model the upper boundary is a t  rest (w = 0 for z = 0) but the lower boundary 
( z  = - H )  experiences a vertical stirring with vertical velocity wb(2, y,t). Thus, 

Z 
w(x, y, z, t ,  = -wb(x, y ,  t )B* (2.3)  

In what follows, we shall only deal with Reynolds equations. If ( ) denotes the 
ensemble average, these equations are written in the rotating frame as 

The flow is assumed to be fully turbulent and it has no mean component, 
implying 

The forcing by the vertical component of velocity y, t )  at the bottom boundary 
is stochastic both in time and space and we assume that it is stationary and 
homogeneous, 

(2.6) 

As a consequence, turbulence is supposed to be statistically stationary and we 
assume that the geostrophic flow is homogeneous, 

(2.7) 

( u )  = (v) = (w) = 0. (2.5) 

a,(w;) = a,(w;> = a,(w;) = 0. 

at(u2) = at+2) = az<u2> = az(v2> = a,(u2) = a,(v2) = 0. 

5 FLM 186 
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When turbulence has been established the vertical motions are no longer statistically 
correlated with the horizontal motions, and any turbulent vortex can be either 
stretched or compressed. We obtain 

( u v )  = ( u w )  = ( vw)  = 0.  (2.8) 

All terms in the momentum equations (2.4) vanish except for the momentum on the 
z-axis which reduces to 

(2.9) 
1 

P 
az(w2) = - -az(p) .  

The vertical gradient of the turbulent kinetic energy is 

(2.10) 

as deduced from (2.3). This quantity is not zero and it has to be balanced by a 
vertical mean pressure gradientt. The particular form of the quantity -aZ<w2) has 
to be emphasized. Its behaviour is similar to the basic temperature profile in 
Rayleigh-BBnard convection (5? = -pz). The vertical gradient ( -aZz(w2) = -28) is 
constant and negative like the mean temperature gradient in a thermal convection 
system. The linear stability of the turbulent flow described above is investigated in 
the following section. 

The framework of quasi-geostrophic turbulence is chosen for its physical 
significance as a classical kind of flow occurring in rotating fluids. A consequence of 
the quasi-geostrophic approximation is that azz(w2) is uniform through the fluid. 
Quasi-geostrophy has no further implication in the stability analysis presented 
below, which is valid for any turbulent flow, which verifies the statistical relationships 
(2.5)-(2.10). However, quasi-geostrophy implies that vertical velocities are smaller 
than horizontal velocities by a factor Ro H I L .  We show in the next section that the 
convection pattern has to verify a similar constraint and we specify the conditions 
under which it holds. 

3. The perturbation analysis 
3.1. The perturbation equations 

We denote by (U, V, W , P )  a perturbation of the flow field which is superimposed on 
the turbulent field (u, v ,  w ,p) .  We seek unstable perturbations, i.e. perturbations that 
will grow in time. The timescale of these perturbations is assumed to be large 
compared to the turbulent turnover time. This assumption is necessary in order to 
distinguish the perturbation (U, V, W, P) from the turbulent motions. Writing the 
turbulent flow field, as perturbed by ( U ,  V, W,  P) ,  as (u‘, v’, w’,p’), the instantaneous 
components of velocity are then U +u’, V +v’, W + w’, and the pressure is P-tp’. 
However, we need only consider the statistically averaged quantities appearing in 
the Reynolds equations. (U, V, W) being the mean component of the flow field, we 
obtain 

(3.1) (u‘} = (v’) = <w’) = 0 .  

t In the framework of geostrophic flows (see Pedlosky 1979 for instance) the momentum 
equations are expanded to  the different orders of the Rossby number. Geostrophy, (2.1), is the 
zeroth order, (2.2) corresponds to the first order, whereas (2.9) is the second order. In  principle the 
correlations (uw) and (mu) include higher orders of perturbations of the geostrophic flow which 
are assumed to be zero from (2.8). 
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Furthermore, we assume that all statistical quantities that were spatially 
homogeneous without the perturbation will remain homogeneous in the presence of 
the perturbation. Reasons for this considerable simplification are discussed below. 
Equations (2.7) and (2.8) then imply 

az(u’2) = a,(uf2) = a,(v’2) = ay(v’2) = ( U v )  = ( u w )  = ( v w )  = 0 .  (3.2) 

On the other hand <w2)  is not homogeneous (see (2.10)), and we should expect the 
quantity ( w ’ ~ )  to diverge from ( w 2 )  because fluid particles are convected within the 
layer. Denoting this departure as 

(3-3) q5 = < W f 2 ) - ( W 2 )  = ( W f 2 ) - / 3 Z 2 ,  

this quantity is not spatially homogeneous in general, i.e. 

a,# 8 0, a,+ + 09 + 0 .  (3.4) 

The modification of the turbulent averaged quantities by the perturbation appears 
in the Reynolds equations only through q5 as a result of (3.2) and (3.4). q5 is assumed 
to be of the order of magnitude of the linear part of the momentum of the 
perturbation (U, V ,  W ,  P ) .  The momentum equations are simplified by statistical 
averaging of all turbulent quantities. We obtain 

(3.5) 
1 

P 
a, u+ ua, u+ va, u+ w a, u-fv = --a,p+ V A u ,  

(3.6) 
1 

P 
a, v+ ua, v+ v a, v+ w a, v+fu = --a,p+ v A v ,  

(3.7) 
1 

P 
a, w + u a, w + v a, w + w a, w + az(w’2) = --a, P +  A w  , 

where (3.1) and (3.2) have been applied. Subtracting (2.9) from (3.7) and using (3.3), 
q5 appears in (3.7): 

(3.8) 
1 

P 
a, w + u a, w + v a, w + w a, w + a, q5 = --a,(P- ( p ) )  + Aw . 

P -  ( p )  is the mean pressure. Without restricting the generality of the problem (p) 
is incorporated in P in what follows. The linearized forms of (3.5), (3.6) and (3.8) with 
respect to U ,  V ,  W and P give the small-amplitude equations, namely 

(3.9) 
1 

a,U-fV = - -a ,P+VAU,  
P 

(3.10) 
1 a, V + f u  = - - a , P + v A V ,  
P 

(3.11) 
1 

P 
a,w+a,# = - - a , p + v A w .  

Now with 6 the z-component of vorticity, 

6 = a, v-a,u, (3.12) 
6 2  
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the time evolution of g is deduced from (3.9) and (3.10) as 
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a, 6 =fa, w + V A g ,  

a,u+a,v+a,w=o 
where the continuity equation 

(3.13) 

(3.14) 

has been used. On the other hand the pressure is expressed by applying the 
divergence operator to (3.9)-(3.11) 

(3.15) 

and using the latter relation in (3.11) after the Laplacian oper'ator has been applied 

a, A w = -fa, c+ v M w + (azz + a,,) e. (3.16) to it leads to 

(3.17) For convenience, the quantity 

has been introduced in (3.16), because (3.13) and (3.16) show a remarkable analogy 
with the Rayleigh-BBnard convection problem with rotation (see Chandrasekhar 
(1961), chap. 111). The latter equations are the basic equations governing the time 
evolution of the vorticity and the velocity component along the rotation axis in 
thermal convection, 8 denoting in this case the departure of temperature from the 
mean temperature profile. The time evolution of the temperature perturbation 6 is 
given by the thermal diffusion equation, 

a,e-pw = KAO, (3.18) 
where /3 and K are the mean.temperature gradient and the thermal diffusivity, 
respectively. In  the current turbulence problem we replace (3.18) by an equation 
which is deduced from the time-evolution equation of the turbulent kinetic energy 
of the z-component of velocity. This equation is written (see Monin & Yaglom 1965, 
p. 383) 

1 

P 
--AP = a,,wg, 

e = -a, +CX, y, Z, t )  

(a, + u a,+ v ay + w a,- v A)  (Wf2) + 2 ( w 9  a, w 
= -a,(Uw) -aay(v fwf2)  -a,(wf3) -2((w7p) a,p~)-2v(vw~.vwf).  (3.19) 

Terms on the right-hand side make the latter equation much more complex than the 
thermal diffusion equation and a closure theory is required. First notice that third- 
order correlations (ufwf2) ,  (v'wf2) and (wf3> vanish because probabilities for the sign 
of each velocity component being positive or negative are equal. When there is no 
mean flow (3.19) reduces to 

- v A ( W ~ )  = -2( (w/p)a ,p) -2v(vw~~w) .  (3.20) 

Introducing q5 = ( w f 2 )  - (w') in (3.19) and linearizing with respect to U ,  V, W and q5, 
we obtain 

(a, - v A)  + 2 ( ~ 2 )  a, w + az(w2) w 
= -2(((w~/p)a,pf)-((w/p)a,p))-zV((vw~.vw~)-(vw~vw)), (3.21) 

where (3.20) has been used. The closure of the right-hand side of (3.21) should retain 
the turbulent diffusion of q5 and some interaction between the turbulence and the 
mean flow through velocity-pressure correlations. The consistency of our linear 
model requires the closure of (3.21) to be a linear function of q5 and W. We set 

- ~ ( ( W / P )  aZ,pf> - (WP)  a , ~ ) )  -2v((vWf.vwf) - (vW. vW>) 
= 2A (w') 3, W + v, A$. (3.22) 
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A is a constant of order unity and ut denotes the turbulent diffusivity. Using (2.10) 
and (3.22), (3.21) leads to 

(a, - K A) 6 + 2/32 w + 2/3( 1 - A )  2 2  a, w = 0,  (3.23) 

with K = v+u,. Applying the x-derivative to (3.23) gives the time evolution of 0. 
We get 

(3, - K A) 8- 2 / 3 ~  - 28(3-2A) z a, W - 2( 1 -A) /3z2 a,, W = 0. (3.24) 

This equation replaces the thermal diffusion equation (3.18). The linear system to be 
solved consists of (3.13), (3.16) and (3.24). 

Returning to the assumption of no variation of the quantities ( u ' ~ ) ,  (vP2) ,  (u'v'), 
(u'w') and (v'w') (see (3.2)), one notes that a complete solution of the problem 
involves the solution of the evolution equations for all components of the Reynolds 
stress tensor. This requires five additional closures for these equations. Since (uv)  = 
( u w )  = ( v w )  = 0 in the basic state there should be no interaction between the mean 
flow and the Reynolds stresses, so that the equations (similar to (3.21)) reduce to 
simple diffusion equations for the quantities (u'v'), (v'w') and (u'w'). It is therefore 
valid to neglect these terms. The same considerations cannot apply to <d2) and 
( v ' ~ ) .  Since (u2)  =k 0 and (v2) + 0, interactions of turbulence with the mean flow can 
produce an accumulation of turbulent energy at some places. We omit this effect for 
simplicity, and conjecture that it has no crucial implication. Similarly, in $3.3 an 
output of the model will indicate that energy exchanges between (d2)  and the mean 
flow is not a leading effect in the instability process. 

3.2. Normal mode analysis 
We seek solutions having the form 

I W ( x ,  y ,  z, t )  = W,(z) ei(kzz+kvV)+pt, 

O(z, y, z, t )  = 8 ( z )  ei(kzz+kuu)+pt, 

c(x,  y, z, t )  = Z(z) ei(kzz+kvu)+pt. 

Equations (3.13), (3.16) and (3.24) become, respectively, 

(3.25) 

{ p  - v(D2 - k2)}  Z = fDWl, (3.26) 

{p-v(D2-k2)}(D2-k2) W, = -fDZ-k28, (3.27) 

{ p - K(  D2 - k2)}  8 = 2/3W1 + 2/3( 3 - 2A) 2 D W, + 2/3( 1 - A )  D2W1 , (3.28) 

with k2 = k i  + k i  and D = a,. By applying the operator (p - K ( D ~  - k2))  (p- v(D2 - k2))  
to (3.27) we obtain 

{ p -  v(D2 - k2)y {p--(D2 -k2)}  (D2 -k2)  W, = - f 2 { p  - K(D'- k2)}  D2Wl 
- 2/3k2{p- v(D2 - k2)}  { 1 + (3 - 2A) ZD + (1 -A) z2 D2} W, , (3.29) 

after (3.26) and (3.28) have been used. The system is unstable when one can find a 
value of p with Re (p) > O  such that (3.29) is satisfied together with associated 
boundary conditions. The system is of order eight. The order is reduced to six when 
instability sets in as stationary convection (p = 0). Equation (3.29) can then be 
written 

When the depth of the layer is chosen for the lengthscale the dimensionless 
wavenumber is defined as 

a = k H ,  (3.31) 

-v2~(D2-k2)'WI = f2~D2Wl+2@k2{1 +(3-2A) z D +  (1 -A)z2D2} Wl. (3.30) 
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and (3.30) can be rewritten in dimensionless form 
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(D2 -a2),"W, = -TaD2Wl-Re a2{1 + ( 3 - 2 4  zD+ (1 --A) z2D2} W,. (3.32) 

There are two non-dimensional numbers in (3.32), namely the Taylor number as 

f2H4- 1 usually defined, 
Ta=- -- 

v2 E2 
(3.33) 

(E being the Ekman number defined in §2), and the Reynolds number 

2 ~ ~ 4  
Re = -, 

VK 
(3.34) 

which is equivalent to the Rayleigh number in thermal convection. Incidentally an 
equivalent Prandtl number is Pr = V / K .  If the turbulent diffusivity of the turbulent 
kinetic energy is neglected (ut = 0 in (3.22)) the Prandtl number is Pr = 1 as deduced 
from (3.24), and his number decreases for increasing eddy diffusivity. 

Six boundary conditions are required to solve (3.32). Since the upper boundary 
(z = 0) is a solid wall the associated boundary conditions are 

W, = DW, = # = 0 (3.35) 

or W, = D'W, = # = 0,  (3.36) 

depending on whether the upper boundary is rigid or free. The boundary condition 
on # expresses the requirement of zero velocity component normal to the wall. The 
lower boundary ( z  = - H) is an open boundary where the turbulent velocity w is of 
maximum strength. Imposing the condition W, = 0 a t  z = - H  would imply that the 
rate of stretching, DW,, changes its sign between z = 0 and z = -H. At any point 
(z, y) the integrated vorticity g along the z-axis from z = - H  to z = 0 would then 
equal zero, suggesting a flow that consists of vortices with opposite moment on top 
of one other. This is seen, for instance, in the cell pattern of thermal convection as 
it is illustrated by Veronis (1959) and Chandrasekhar (1961, p. 113). In turbulent 
rotating flows, though, such vortex structures, imposed by the boundary condition 
W, = 0 at  z = -H, are not observed. Since the lower boundary is not a wall, this 
condition can be relaxed. We instead pose 

DW, = 0, 

(D2+a2)Wl = 0, 

( 3 . 3 7 ~ )  

(3.37 b)  

and # = O  a tz=-1  (3.37c) 

( z  being dimensionless). The boundary conditions (3.37a-c) allow a mass exchange 
between the layer and the outside (W, =+ 0 at z = - 1). However, there is no 
dynamical coupling between the two. Equation ( 3 . 3 7 ~ )  imposes the condition that 
the turbulent kinetic energy at the lower boundary remain unchanged when 
convection sets is. As a result of ( 3 . 3 7 ~ )  there is no energy exchange between the 
mean flow and the turbulence at this position, and (3.23) reduces to a balance of the 
turbulent kinetic energy flux with diffusion driven by the interior mean flow. Finally, 
(3.37 b) expresses that the exterior flow applies no torque a t  the boundary. Indeed, 
Reynolds stresses apply no torque as a result of (3.2), and the transverse components 
of the viscous stress tensor vanish if 

p(a,u+a,w) = 0 ,  ( 3 . 3 8 ~ )  
p(a,v+a,w) = 0.  (3.38 b)  
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Using (3.38), the application of the z-derivative to (3.14) immediately leads to 
(3.37b). Succinctly, the flow between the layer and the exterior is driven by the 
internal dynamics of the layer. The exterior region only serves as an energy source. 
This is a major difference between our model and previous ones (Lundgren 1985; 
Maxworthy ed al. 1985), which assumed that the generation of vortices was governed 
by motions parallel to the rotation axis. These vertical motions are an input in the 
latter models, whereas in our model they are a consequence of the dynamics of the 
layer. 

The present theory was formulated in the context of laboratory experiments with 
large Taylor numbers (i.e. small Ekman numbers). We restrict ourselves to this case 
in what follows. We shall see that (3.32) reduces to an equation of order two, for 
which we shall retain only the two lowest-order boundary conditions, 

W , = O  a t z = O ,  DW,=O atz=-1.  (3.39) 

3.3. Critical conditions at large Taylor numbers 
Provided a solution of (3.32) exists for asymptotically large Taylor numbers (i.e. 
Ta+ a), we expect that W .  and its derivatives will not become disproportionately 
large. Equation (3.32) therefore reduces to a second-order differential equation with 
associated boundary conditions given by (3.39). The results on the existence of a 
solution for a Sturm-Liouville system (see Morse Q Feshbach 1953, for instance) 
imply that aa and Re a2 must be of the order of magnitude of Ta.  We set 

Re = r T d ,  a = a T d .  (3.40) 

Using this scaling, (3.32) reduces to 

{ 1 +m2( 1 - A )  2} D2Wl +ra2(3-2A) z DW, + (ru2-a6) W, = 0 ,  (3.41) 

an equation that does not depend on the Taylor number. If r ,  denotes the lowest 
value for which (3.41) admits a solution with a given value a,, the critical Reynolds 
number Re, and the corresponding wavenumber a, are then Re, = r,Td and 
a, = a,Tag, respectively. This number may not be the critical Reynolds number 
because the marginally unstable state is not necessarily stationary convection (i.e. 
Im(p) = 0). However, there are remons to believe that instability occurs via an 
exchange of stability. This happens in thermal convection when the Prandtl number 
is greater than or equal to 1 (Chandrasekhar 1961, $29). It was mentioned in 83.2 
that the equivalent Prandtl number is Pr = 1 in our problem when turbulent 
diffusion is neglected. The similarity of (3.13), (3.16) and (3.24) with the equations of 
thermal convection may imply in certain cases a similar transition to instability. The 
possible existence of overstable oscillations for a Reynolds number below the critical 
value for stationary convection is not investigated in the present paper. However, 
future research should consider this more complicated case, especially as turbulent 
diffusion decreases the equivalent Prandtl number below Pr = 1. 

The marginal curve of stability (i.e. Re,/Tai as a function of a,/Ta)) has been 
obtained by numerical integration of (3.41) for different values of A. A shooting 
technique was used. Eigenvalues A = a6-ra2 were computed for given values of ra2 
and there is a non-zero physically meaningful solution to (3.41) when at  least one 
eigenvalue corresponds to a positive value of as. The marginal curve of stability 
r ,  = rm(am) was determined as the lower curve bounding the domain containing the 
unstable points (there is no solution for r < rm(am)). The existence of this curve is 
established when A < 1 because (1 +ra2(1-A)z2)  is always positive and (3.41) is a 
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FIGURE 2. Marginal stability curves ~,,,(a,,,) for vfrious values of the parameter A. A logarithmic 
scale is used for the Reynolds number RelTaS. For each curve the region below the curve 
corresponds to stable conditions. Error bars indicate the range of values accounting for three HBG 
experiments. For all experiments the grid oscillation frequency is n = 13.3 7t rad s-’. The Coriolis 
frequencies ( f =  2 9 )  are 47t rad s-’ (A), 2n rad s-l (H) and 0.4 A rad s-l (O), respectively. The 
depth of the layer is H = 50 cm. The mesh and the stroke of the grid are M = 5 cm and S = 4 cm, 
respectively. Also plotted are the error bars (respectively C1, C2 and C3) which correspond to the 
three experiments reported in table 2 of Colin de Verdikre’s (1980) paper. 

Sturm-Liouville eigenvalue problem of the form D(ql(z) DW,) = Aq,(z) W,, q1 and q2 
being two positive and continuous functions in the range - 1 < z < 0. The 
eigenvalues A, form an infinite set of negative numbers having an upper bound. When 
A > 1 the quantity (1 + raz( 1 -A) 2) changes its sign between z = - 1 and z = 0 
unless ra2 is sufficiently small. Hence there also exists a marginal curve of stability 
when A > 1 though we may expect that this curve will be shifted towards smaller 
values of r for increasing values of A. This is most clearly seen in figure 2 where the 
marginal curves of stability are plotted for various values of A (recall that A 
parametrizes in the present model the energy transfers between the mean flow and 
turbulence). The plots are restricted to values of A ranging from -10 to 10, these 
being the most reasonable numbers for the purpose of discussing the experiments of 
HBG (see $4). When A < - 10 or A > 10 the closure of the turbulent kinetic energy 
is presumably no longer satisfactory since this implies a high rate of energy exchange 



Genesis of quasi-steady vortices in a rotating turbulent $OW 131 

between the mean flow and turbulence. A special case is A = 1. In this case (3.23) 
indicates the absence of interaction between the mean flow and turbulence. 
Perturbations of the turbulent kinetic energy are carried with the mean flow while 
diffusing. When A is not equal to 1 interactions between the mean flow and 
turbulence take place. The effect is weak for A decreasing from the value A = 1. The 
marginal curve of stability shifts slightly towards larger values of r without variation 
of the wavenumber band. On the contrary we verify that instability occurs for much 
lower values of r when A is increased above A = 1. In this case the wavenumber of 
the most unstable mode increases with increasing A. 

The critical Reynolds number Re, for a given value of A is determined in figure 2 
from the lowest value r, of the marginal curve of stability. Then 

Re, = r,Tai, (3.42) 

and the corresponding wavenumber is 

a, = a,Tai. (3.43) 

a, is the value of a,,, corresponding to r, on the marginal curve of stability. An 
interesting result of figure 2 is that a, is - 1 for all values of A below A = 1 and 
therefore the scale of the most unstable mode only weakly depends on A. 

It is worth noting that the mean flow is in geostrophic equilibrium at largf: Taylor 
numbers. The ratio of the viscous force to the Coriolis force is of order Ta-3 a2, and 
it therefore decreases like Ta-4 since a2 - Tat, (3.40). The continuity equation then 
implies that the vertical velocities W have to be small compared with horizontal 
velocities (U, V ) .  We verify this condition with (3.14) when (a/21t)~ 4 1, this 
inequality holding at least for a ;5 a,. 

4. The application to laboratory experiments 
Turbulence in HBG experiments is generated by an oscillating grid in the lower 

part of the rotating tank. (The HBG experimental set-up is described summarily 
here. The reader may refer to their paper for further details.) Far from the grid 
midplane the flow consists of an array of vortices roughly parallel to the rotation 
axis. The flow is quasi two-dimensional in a plane perpendicular to this axis, and 
geostrophic except within the vortex cores. On the other hand, turbulence is only 
weakly modified by the rotational constraints in the region close to the grid where 
it is mainly three-dimensional. The transition between the regions with three- 
dimensional and two-dimensional turbulence is shown to be sharp (HBG). Hence 
straightforward choices for the positions z = 0 and z = - H  (see figure 1) are the 
upper boundary of the tank (a rigid lid in the experiment) and the position of the 
latter transition (referred to as 2, in the HBG paper), respectively, so that H is 
approximately 50 cm. Streakline photographs of the flow in a sheet of light parallel 
to the rotation axis (Mory & Hopfinger 1985) confirm the quasi two-dimensionality 
of the flow, but they do not give quantitative estimates of the vertical component of 
velocity at the position z = - H  as defined by (2.3), not do they bear out the choice 
of H as vertical lengthscale. Two reasons for this may be mentioned. First, steady 
vortices were observed in all experiments that have been carried out. Velocity 
measurements could not be performed independently of the steady flow pattern. 
Secondly, streakline photographs give a correct measurement of the velocity only for 
particles remaining in the sheet of light during the whole exposure time. Owing to the 
horizontal motions, most particles cross the sheet of light during this time except in 
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the central part of the vortices where a strong component of velocity parallel to the 
rotation axis is measured. Therefore we only estimate an upper and a lower bound 
for the velocity (w$ at the lower boundary ( z  = -H). The upper bound is given by 
taking (w$ = u, where u is the representative velocity of motions in a plane 
perpendicular to the rotation axis (see $2). This is a correct scaling in the domain 
where motions are three-dimensional and this scaling is an upper bound of the 
velocity scale in the transition region between three-dimensional and two- 
dimensional turbulence. Parameters that can be varied in HBG experiments are the 
rotation period of the tank Q( f = 20),  the frequency of grid oscillation n and the 
depth of the fluid. The results of HBG ($2 in their paper) lead to 

for the upper bound of (w$, where M and S denote the mesh and the amplitude of 
oscillation of the grid, respectively. On the other hand the lower bound is determined 
from the geostrophic scaling of the vertical velocity ($2) based on the eddy spacing I, ,  

2 

( w;)hin - fH (u/f 1,) - 1.9 x fH , 

recalling that the Rossby number (u/f 1,) is about 0.044 (HBG). 
Figure 2 enables the present model of instability to be compared with the HBG 

experiments. The definitions of the Reynolds and Taylor numbers (3.33) and (3.34) 
and the asymptotic relationships between the Reynolds number, the wavenumber 
and the Taylor number lead to- 

and 

(4.3) 

(4.4) 

where t..e wavenumber k = 2x11, is related by (3.31) to the dimensionless 
wavenumber a. In  (4.3) the eddy diffusivity vt has been neglected, and the diffusivity 
K is then equal to the molecular diffusivity v. The implications of this assumption are 
discussed later on. Replacing (wg) by its maximum (4.1) and minimum (4.2) values, 
the upper and lower bounds of the value of r achieved in an experiment are 

whereas a becomes 

S(SM);n 
r,,, = 4.6 x HtvY ' 

f 
rmin = 7.5 x lo-* - 

V t  ' 

(4.5) 

The error bars delimiting these values of r are shown in figure 2 for three 
experimental conditions studied by HBG. The scale of the most unstable mode (for 
A < 1) is one fourth of the typical lengthscale of eddy spacing, so that the scaling of 
our model is the correct order of magnitude for determining the scale of the steady 
vortices observed in the experiments. This was not an obvious result a priori with 
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regard to the very large values of the Taylor number. On the other hand the critical 
Reynolds numbers for the onset of instability are, in general, one order of magnitude 
larger than the Reynolds numbers in the experiment. This discrepancy is presumably 
a result of the closure of the turbulent kinetic energy which was chosen to be as 
simple as possible. 

Turning our attention to the experiments of Colin de Verdikre (1980), the 
corresponding values of rmax, rmin and a have been computed and are also plotted in 
figure 2. Rossby numbers are smaller in these experiments than in HBG’s. The 
wavenumbers a for the experimental conditions correspond approximately to the one 
observed by HBG, but the range of Reynolds numbers rmin < r < r- are lower 
compared with HBG conditions. The comparison with our model is, however, 
apparently unsuccessful. Colin de Verdiltre did not study in detail the vortex 
structures, but his vortices seem also to be quasi-steady vortices. 

The model implies the existence of a flow regime, for sufficiently low values of 
2(w;)H2/vZ,  that is stable. This regime, analogous to the conductive state in 
Rayleigh-BBnard convection, only displays turbulent eddies having a timescale of 
the order of magnitude of the turbulent turnover time. This regime was not observed 
in the experiments. Indications on how to establish a turbulent flow without the 
occurrence of steady vortices follow from (4.5). If such a flow regime exists according 
to the present theory, it should be observed when decreasing the value of r.  This 
cannot be done by decreasing the frequency n of the grid oscillation because 
turbulence is already weak in HBG experiments (the Reynolds number based on the 
integral lengthscale is proportional to n and of the order of magnitude of 600). 
Moreover, the depth H cannot be increased significantly in any experimental facility 
(the depth of the HBG tank is 80 cm) and there would be serious doubts about the 
establishment of a quasi-geostrophic turbulent flow in a much deeper layer. The best 
choice is presumably to increase the rotation rate of the tank. Equation (4.7) implies 
that the eddy spacing of the vortices will then decrease?. 

The discussion above neglected the eddy diffusivity vt introduced in the closure of 
the turbulent kinetic energy equation. Taking this eddy diffisivity into account, the 
experimental points in figure 2 would then be displaced to smaller values of r and 
larger values of a, but the effect could not be very important, as Colin de Verdikre 
(1980) and Mory & Hopfinger (1986) measured relatively low eddy viscosities. 

A number of discrepancies between the results predicted by the model and 
experimental observations highlight its weaknesses. First, coherent eddies in the 
experiments are not geostrophic, at least inside the vortex cores which are of limited 
extent compared to the eddy spacing. The model is linear and geostrophic, implying 
a much larger size of the vortex cores and much smaller strengths. Secondly, the 
normal mode analysis seeks out solutions that consist of an array of cyclonic and 
anticyclonic vortices. Video films of HBG experiments show that both cyclonic and 
anticyclonic vortices are generated when turbulence is suddenly produced in a 
rotating tank, but cyclonic vortices are quickly enhanced, producing strong shears 
which destroy the anticyclonic vortices. The steady-state pattern in the experiments 
thus consists of an array of cyclonic vortices, the anticyclonic vorticity being 
distributed in between them. Colin de Verdikre’s experiments give qualitatively 

t The only useful information to be obtained from the experiments comes from qualitative 
observations of the flow field. In particular, a quantitative measurement of the mean flow, by 
introduction of a hot-film probe or LDA measurements, is not possible. The evolution timescales 
of the quasi-steady vortices are up to 100 rotation periods of the tank, and this is not a sufficient 
duration to distinguish the steady and the fluctuating components of the velocity signal. 
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better ‘test flows ’ for the theory, because anticyclonic and cyclonic vortices are in 
equal number, and vorticity apparently is smaller than in HBG’s. (Colin de Verdihre 
did not, however, measure the vorticity inside the vortices.) 

5. Conclusion 
The most important limitation of the model is the necessary recourse to a closure 

theory of the turbulent kinetic energy equation. Section 4 brought out the difficulties 
of a quantitative comparison between the model and the experiments. However, in 
spite of the evidence given by the experiments, that ageostrophic and nonlinear 
processes are an important part of the dynamics, and in spite of the speculative 
nature of the study due to the numerous assumptions of the theory, the linear model 
presented in this paper captures some of the major features of the experiments that 
were not given by the previous theories, especially theories relating the vortex 
genesis to the angular-momentum mixing (Bretherton & Turner 1968 ; McEwan 
1976; Thompson 1979). First, the model provides an explanatory framework for the 
steadiness of the coherent vortices generated, an observation that no earlier model 
has accounted for, as far as we know. Secondly, the eddy spacing in the experiment 
is of the order of magnitude of the scales for which the model predicts an instability 
to occur. Thirdly, the critical numbers for the onset of instability are one order of 
magnitude larger than the values achieved in the experiments. This is not a very 
significant disagreement since the closure remains very crude. A fourth crucial 
feature of the model is that the occurrence of vortices depends only on the dynamics 
of the layer. Some flow is allowed between the layer and the outside, but the 
dynamics of the exterior (not *described here) take no part in the generation of this 
flow. This flow ensures stretching in order to overcome viscous dissipation of the 
vortices. The existence of such a flow was a starting point for the theories of 
Maxworthy et al. (1985) and Lundgren (1985), whereas it is a consequence of the 
dynamics of the quasi-geostrophic layer in our model. 

Since the pioneering work of Malkus (1956) it has been often considered that the 
occurrence of turbulence in an unstable flow tends to modify the mean profiles 
(velocity or temperature) so that the resulting mean flow is marginally unstable with 
regard to the instability at  work. To mention only part of the literature, we cite the 
cases of Poiseuille or Taylor-Couette flows (Malkus 1978), Rayleigh-BBnard layers 
(Spiegel 1961) and jets, wakes and shearing layers (Lessen 1978). Such a mechanism 
may happen even for very highly supercritical conditions, and Barcilon et al. (1978) 
observed that a Taylor4ouette flow having very high Taylor numbers returns in 
certain conditions to a marginally unstable flow pattern. Our work places a 
particular emphasis on the marginally unstable conditions by conjecturing that the 
vortex flow corresponds to a marginally unstable flow pattern, and is therefore 
connected to the previously cited works. However, our approach differs from that of 
Malkus in a number of ways. The first is that Malkus’ ideas were applied to flows 
where turbulence is a result of a well-identified instability. The criterion for 
instability is well established and the mean profiles have very simple geometrical 
properties (one-dimensional for Poiseuille flows, for instance). In turbulent rotating 
flows such as those considered here, turbulence is not produced by a simple 
instability mechanism and the geometry is rather complicated. Our work can only be 
a necessary first step towards a theory inspired by Malkus’ ideas, as it is the first one 
to propose an instability mechanism in turbulent rotating flows. A second problem 
is a basic contradiction between one of our assumptions and one of Malkus’. A major 
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hypothesis of Malkus’ theory, which greatly simplifies the modelling of turbulence, 
is to neglect any modification of turbulence when an instability occurs. The 
instability only depends on the mean flow pattern. Recall that our theory has its 
origin in the opposite assumption (see (3.3)). 

We have demonstrated the analogy in a rotating fluid between thermal convection 
and turbulence, arising from the similarity between temperature in thermal 
convection and the gradient along the rotation axis of the turbulent kinetic energy 
in quasi-geostrophic turbulence. Another type of instability could have been evoked 
to explain the vortex genesis. The analogy between stratification and rotation has 
been often mentioned, but Veronis (1967) pointed out major differences between the 
two. In particular, a formal analogy is certainly difficult to establish between 
turbulence in a stratified flow (Ivey t Corcos 1982 ; Browand k Hopfinger 1985) and 
turbulence in a rotating fluid. The latter authors explained the formation of mixed 
layers in a stratified turbulent flow by an argument based on conversion of kinetic 
energy into potential energy. It is not obvious how to express a quantity in a rotating 
fluid that is equivalent to potential energy in a stratified flow. Thermal convection 
is a phenomenon which is closer to quasi-geostrophic turbulence than are stratified 
turbulent flows. 
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